
Ramfinder

Identify, stash andfetch

by Ian Adam

Introduction

Adding an external RAM cartridge to a Commodore 64 or 128

can greatly increase its power and speed. For example,

program overlays and disk files can be held in RAM, for near-

instant access. A word processor or spreadsheet can now

handle vastly larger documents or tables, rivalling those on

any other personal computer. Another of my favourite uses is

to prepare a number of graphics images, either high-resolution

or low-res, and stash them in the RAM cartridge. When these

are fetched rapidly, some pretty good animation can be created.

Many other kinds of programs can use that extra capacity for a

variety of different purposes, if only they know it's there.

The speed of the RAM cartridges is truly amazing. The RAM

Expansion Controller is a special-purpose Direct Memory

Access chip; it has a very limited instruction set, and is opti

mized for just one purpose - moving data. As a result, the data

transfer rate is one byte per clock cycle, or one million bytes

per second. This is far higher than with any other method,

even much higher than you could achieve with hand-crafted

machine language (a maximum of 70,000 cycles per second).

Compared to loading data from a 1541 disk drive... well,

there's just no comparison. When programming animation

with the cartridge, I find that it's actually necessary to intro

duce delay loops in order to keep the animation down to a rea

sonable speed! The RAM cartridge can load high-resolution

images about twice as fast as the video chip can display them,

and four times as fast as the human mind can perceive them.

With all of these capabilities at hand, it follows that the thor

ough programmer will take the time to write programs in such

a way that external ram is taken advantage of. After all,

there's no sense in the user buying a cartridge, if programs for

the computer don't make use of the facility. Besides, your pro

grams will look so much more impressive when they use all of

the power at hand.

Right away, though, you run into the little problem of finding

out how much RAM, if any, you have to work with. The stan

dard Commodore operating system doesn't test for external

RAM, and the cartridge itself doesn't go out of its way to tell

you that it's present, so you have to devise a way to find out

for yourself. What's more, while the cartridge does have a

status byte to tell you how big it is, unfortunately two of the

three available cartridges can have the same status byte!

That's the bad news. The good news is that all three cartridges

use the same ten instruction registers, so they can all be con

trolled with the same commands. Furthermore, they are all

located at the same address in the I/O block, at $dfOO to $dfOa,

regardless of what computer they are installed in. Here are the

cartridges Commodore has made available for the 64 and 128:

Model

1764

1700

1750

Banks

4

2

8

RAM

256K

128K

512K

Status Byte

xxxlxxxx

xxxOxxxx

xxxlxxxx

For

C 64

C 128

C 128

Bank

0 to

0 and

0 to

#s

3

1

7

Check the larger accompanying table for further details on the

meaning of the various control registers. In theory at least, the

status byte (at $dfOO) should be a sufficient signature to identi

fy the cartridge uniquely, once you know which model of

computer it's installed in. After all, there is no duplication of

the byte within each computer model. The 64 is not supposed

to use a 128-model cartridge, since its meager power supply is

barely capable of powering the computer itself, let alone any

RAM expansion. The 1764 comes with an upgraded power sup

ply, and so would not be of interest to an owner of a 128.

In the real world, however, you must remember that hardware

could be combined in ways that your program might not have

anticipated. For example, a Commodore 128 could be running

a C64 program in 64 mode, and still have access to either of

the 128-model expansion cartridges. You could also encounter

a 64-model cartridge being operated in a 128. Thus, there is no

guarantee that the cartridge will be the one you expect from its

signature byte.

What's more, there still remains the problem of sorting out

whether a cartridge is present at all. A genuine status register

can take on many different values at different times, as a

glance at the table will illustrate. However, if there is no

40 Transactor

cartridge present, a read of the address of the non-existent

status register gives a random value, which could mimic the

status byte of a cartridge. All in all, an interesting program

ming challenge.

The Ramfinder program

To the rescue rides the Ramfinder program. The challenge of

detecting RAM isn't all that difficult to deal with, and any

experienced programmer could tackle it reasonably well.

However, I've always felt that the programmer should be freed

to deal with important matters like making his or her program

work properly, and not have to spend time and energy worry

ing about little details like what sort of hardware is attached.

To help out with this, I prepared the Ramfinder program,

which has several useful advantages. This compact program

will run in either the 64 or the 128, with no preference for

either. As a further advantage, it is fully relocatable to any

available start address (SA), so it will be compatible with just

about any program you may want to write. What's more, it has

three handy entry points:

sys sa identify RAM cartridge & report

sys sa+4 STASH to expansion RAM

sys sa+7 FETCH from expansion RAM

All of this usefulness is packed into just over 100 bytes of

machine language.

Of the three entry points, the first entry is the key one, because

it will check whether or not a RAM cartridge is present. If none

is found, it will return a value of zero. If it succeeds in finding

external RAM, then the program will perform a couple of addi

tional tests to identify which cartridge is present. It will return a

result of 2,4, or 8, representing the number of banks of memory

available. The result is stored in zero-page memory, where it can

be retrieved with a simple Ida $fb, or a peek(251) from basic.

The result is also held in the accumulator on departure.

The second and third entry points will perform very simple

STASH and FETCH operations. Because the 64 and 128 manage

their memory in such different fashions, these operations will

not deal with subtleties like data in hidden memory banks.

However, they are ideal for my favourite task, pulling graphic

screens in and out of memory. To use these operations, put the

number of the external RAM bank that you want to use in $fb

(from BASIC: poke 251, bank#. For example, if you have a

four-bank cartridge, select a bank number of 0 to 3). Load the

microprocessor registers as follows:

accumulator high byte of expansion address

X register high byte of computer address

Y register high byte of length of transfer

(all low bytes will be set to zero)

If you are working in machine language, this is very straight

forward. If you are working in BASIC 2.0 on the 64, just POKE

these three values into memory locations 780 through 782,

then sys sa+4. With BASIC 7.0 on the 128C the values can be

transferred directly by the extended SYS command (as an

example: sys sa+4,8,4,4 to stash a low-res screen in the car

tridge at $0800), but be sure you are in Bank 15 when you use

the program.

If you find you need a more comprehensive STASH and FETCH

capability, see Dale Castello's wedge commands for the 64 in

Transactor, Volume 8 Issue 2, page 38 or use the built-in com

mands in BASIC 7.0 on the 128.

Starting Ramfinder

How you use the Ramfinder program is at least partly depen

dent on what you want to do. If you are doing machine lan

guage programming and want to deal with the expansion

cartridge issue painlessly, then type in the source code and add

it to your library of useful routines. Again, note that the code is

fully relocatable, so you should find it most accommodating in

getting along with other routines. Its only requirement is for

one byte of space in zero page, at $fb. A JSR to the start of the

code will identify the expansion RAM available, and on return

the accumulator will contain the number of 64K banks

available. You can use the stash and fetch commands if

suitable to your needs.

For you non-ML programmers, a BASIC loader is also supplied.

Type the program in, being especially careful with the DATA

statements at the end. Be sure to save a copy of the program

before running it. When you do run the program, it gives a

brief description of itself, then asks for the address to load the

machine language into. Enter the address of any suitable free

ram (in the 128, you must be in Bank 15, so the load address

must be less than 16270 in order to stay in non-banked RAM).

If you are unsure, just press Return and the code will be loaded

into the cassette buffer automatically. The program will then

give further instructions for each of its routines.

If you want to incorporate the routine into other BASIC pro

grams that you write, you have my blessings. Of course, you

won't need to include all of the detailed instructions - just the

data statements and their loader.

How it works

The only way to detect a RAM cartridge reliably is actually to

command it to work, then find out whether it performed as

expected. As I mentioned, the status byte should tell you about

the cartridge, but unfortunately it cannot be relied upon. Read

ing this when a cartridge is not installed may yield a phantom

random number, leading to the erroneous conclusion that extra

RAM is available.

To get around this problem, the program puts a known byte in

zero page (the seed value 1 in its storage location at $fb), then

commands the cartridge to save the page in expansion RAM.

The value in $fb is changed (to #$b5, a convenient alterna-

Volume 9, Issue 6 41

tive), then the page is fetched back. By checking what value

remains, the presence or absence of a cartridge can be de

duced. If none, then a value of zero is returned.

With the knowledge that a RAM cartridge is present, the status

byte can be read reliably. If bit 4 is clear, then the cartridge

must be the 1700, and the task is finished.

There are two beneficiaries of this process; one is the user,

whose investment in an expansion cartridge is rewarded with

programs that offer more power and speed. The other benefi

ciary is you, the programmer - your programs will be slicker

and more popular when they take advantage of all the

resources available to them. Ultimately, that reflects

favourably on your ability as a programmer!

Otherwise, there are still two possibilities, so one more test is

required. This depends on the characteristic that the bank

addresses 'wrap around'; that is to say, access to a bank

beyond those in place will be decoded into the existing banks.

To make use of this, remember that zero page has already been

stashed in bank 0: this page will now be verified against bank

4. In the 1764 (the 256K cartridge) bank 4 is read as bank 0, so

the verify operation succeeds. In the 1750, bank 4 is distinct

and different from bank 0, so the verify fails. Thus, the detec

tion is complete.

Listing 1: ramfinder.bas

REGISTER

STATUS

COMMAND

ADDRESS

EXP ADDR

BANK

LENGTH

IRQ MASK

INCREMENT

ADDRESS

$DF00

$DF01

$DF02

$DF03

$DF04

$DF05

$DFO6

$DF07

$DF08

$DF09

$DF0A

Table

TYPE

Read

Only

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

of REU Registers

MEANING

bits 0-3

bit 4

bit 5

bit 6

bit 7

bits 0,1

bit 4

bit 5

bit 7

low byte,

high byte

low byte,

high byte

RAM bank f

low byte,

high byte

bit 5

bit 6

bit 7

bit 0

bit 1

version

'size'

1 = verify error

1 = complete

interrupt pending

transfer type

0 = $FFOO trigger

1 = reset parameters

execute

computer address

expansion RAM address

low bits only

length of transfer

IRQ on verify error

IRQ on completion

enable interrupts

0 = increment RAM addrs

1 = fix RAM address

0 = increment host addrs

1 = fix host address

The benefits are yours

How you use this program is up to you. It is most useful when

combined with other programs, whether in basic or machine

language. Ramfinder is compatible with both; its length and

transportability make it easy to incorporate with other pro

grams of all types. [If you've ever plugged in your REU and

booted GEOS only to discover that the REU wasn't seated prop

erly and thus was not seen by the system, you'll recognize an

other usefor the program as published. - MO]

PK 100

PH 110

PK 120

GP 130

GK 140

CA 150

GG 160

JM 170

OL 180

II 190

MD 200

DK 210

HL 220

OE 230

HK 240

OG 250

FE 260

10 270

MI 280

HP 290

GJ 300

KD 310

EL 320

CF 330

CE 340

JA 350

KL 360

El 370

BP 380

6F 390

HI 400

DN 410

DF 420

CD 430

FB 440

GD 450

HP 460

GC 470

PF 480

CC 490

ND 500

KB 510

GM 520

GI 530

LN 540

LL 550

AA 560

DK 570

IL 580

NK 590

CF 600

IM 610

BG 620

KO 630

AI 640

OP 650

FG 660

DO 670

CG 680

GA 690

NE 700

ON 710

BH 720

print chr$(147):print"** ramfinder **"

print:print"(c) ian adam"

print"Vancouver be 1988"

print:print"this short program will identify an"

print"external ram cartridge attached to"

print"the computer, and indicate its size"

print"in 64k banks, the program will operate"

prinf'without modification in either"

prinf'the 64 or the 128."

print:print"the program is fully relocatable to"

print"any start address, for compatibility."

print"good locations are 828 in the 64,"

print"and 2810 in the 128."

print:input"your start address";a$

sa=val(a$):if sa=0 then sa=828 -2000*(peek(46)>27)

for i=sa to sa+117

read a:poke i,a

next

print chr$(147):print"identifying ram:"

print:print"sys"sa

print:print"this command will locate a ram"

print"cartridge and indicate the number of"

prinf'banks in location $00fb (251)."

print"a value of 0 means no expansion ram."

prinfoptions are 2, 4, or 8 banks of 64k."

print:print"number of banks installed now:"

sys sa

print:print"peek(251) =" peek(251)

print:print"press return to continue"

input a$

print chr$(147):print"stash and fetch:"

print:print"to start, set these parameters; all"

print"others will be set to zero:"

print:print"poke 251, external ram bank #"

print"accumulator = msb external ram address"

print"x register = msb computer address"

prinf'y register = msb length to transfer"

print:print"on the 64, poke these three values"

prinf'into locations 780 to 782, then...":print

print"sys"sa+4" to stash"

print"sys"sa+7" to fetch"

print:print"on the 128, use the extended sys"

print"command, for example, to save this"

print"screen at the start of external ram:"

print:print"poke 251,0:sys"sa+4",0,4,4"

end

datal69,0,240,6,24,144,80,56,176,77,120,162,10,157,0,223,202,208

data250,232,142,8,223,134,251,169,180,141,1,223,169,181,133,251,141,1

data223,197,251,240,40,173,0,223,41,16,208,4,169,2,208,31,169,4
datal41,6,223,169,1,133,251,169,183,141,1,223,173,0,223,41,32,208

data4,169,4,208,6,169,8,208,2,169,0,133,251,88,96/141,5,223
datal42,3,223,140,8,223,166,251,142,6,223,169,0,141,2,223,141,4

data223,141,7,223,105,180,141,1,223,96

42
Transactor

Listing 2: ramfinder.src

external ram

identifier

'* for the c-64 *

* and c-128 *

(c) ian adam

may 1988

Vancouver be

zpbank = $00fb

rec = $dfOO

'jump table'

start address = test exram

sa + 4 = stash

sa + 7 = fetch

dummy start address:

= $2000

code is fully

relocatable,

and executes

on either the 64

or 128 (bank 15)

Ida #$00 ;entry to test ram

beq trial

clc ;entry for stash

bec stash

sec ;entry for fetch

bes stash

* *

* trial *

* stash *

* *

move zero page from computer

to external ram bank 0, as

a test of cartridge operation:

trial sei

ldx #$0a

clear sta rec,x ; clear registers

dex

bne clear

inx

stx $dfO8 ;move 1 page

stx zpbank /plant seed

Ida #$b4 /control byte = stash

sta rec+1 /execute

the value 1 was saved as a test,

if the stash was successful,

then that seed value will be

restored when the same page is

fetched back, thus, this

sequence will detect a working

external ram cartridge:

Ida #$b5 /control byte = fetch

sta zpbank

sta rec+1 /execute

emp zpbank /check it

beq noram /exit if no exram found

/ external ram located -

; find out how much:

i

Ida rec

and #$10 /check # of banks

bne more

if bit 4 is clear, then

there must be 128k of

external ram, in 2 banks:

Ida #$02

bne exit

if bit 4 is set, then there

are either 4 banks (256k) or

8 banks (512k). test for this

by verifying bank 4. if there

are only 4 banks, bank 0 will

read as bank 4, and verify ok.

if there are 8 banks, a verify

error will result:

more Ida #$04

sta $dfO6

Ida #$01

sta zpbank

Ida #$b7

/set bank 4

/control byte = verify

sta rec+1

Ida rec

and #$20

bne most

Ida

bne

most Ida

bne

#$04

exit

#$08

exit

• ***************

; * *

; * exit with *

; * message *

; * *

; ***************

noram Ida

exit sta

di

rts

; the # of

; be left

/ 0 banks

; options:

#$00

zpbank

/execute

/check status

; for error

/no error, 4 banks

/error = 8 banks

/leave message

expansion banks will

in zpbank ($00fb).

means no external ram.

2, 4, or 8 banks.

* *

* stash and fetch *

* *

a = high byte expansion address

x = high byte computer address

y = high byte of length

bank number in zpbank

all other parameters set to 0

stash sta

stx

sty

ldx

stx

Ida

sta

sta

sta

$df05

$dfO3

$dfO8

zpbank

$dfO6

#0

$dfO2

$dfO4

$dfO7

/external ram address

/set

/set

/set

/set

computer address

length

bank

low bytes to 0

build control byte and execute:

the carry bit will increment the

control byte by 1, when a fetch

was specified in the jump table

adc #$b4

sta rec+1

rts

/build control byte

/execute

/all finished

.end □

Volume 9, Issue 6 43

